Articles Tagged with: press

Ballinger Honored with Prestigious AIA Firm of the Year Award

The Pennsylvania chapter of the American Institute of Architects (AIA) honored Ballinger with the 2020 Firm of the Year Award. The annual award recognizes a firm whose passion and practice has produced notable architecture for at least a decade.

The honor was announced during the AIA Pennsylvania Architectural Excellence Awards broadcast on November 19. Ballinger Senior Principal Terry D. Steelman, FAIA described the recognition as “a testimony to our unwavering commitment to quality at every level of practice. It takes a talented team collaborating with great clients to create quality work. We are privileged to have both.”

“We’re guided by our core values of design excellence, environmental stewardship and commitment to community. These values align with those of the AIA and industry professional organizations for which our firm staff associate to remain at the leading edge of our profession,” said Senior Principal Keith C.H. Mock, AIA.   

Ballinger also received the chapter’s EPiC Firm Recognition for support and development of emerging professionals in 2020.

Judging a Book by Its Cover

Building Design + Construction (BD+C) profiled the NewYork-Presbyterian David H. Koch Center, which was recognized with a Building Team Award from BD+C this year.

Excerpted from Building Design + Construction:

This 17-story building encompasses three separate programs: The David H. Koch Center Ambulatory Care Center, Integrative Health, and the Alexandra Cohen Hospital for Women and Newborns that occupies the top six floors and is designed to support a future 230,000-sf overbuild.

The client’s vision was guided by six patient-centric and operational-efficient planning and design principles that emphasize quality and flexibility.

Three architectural firms collaborated on devising a unified concept that achieves the highest degree of patient experience. Doctors, nurses and staff were involved in the development of the facility, too. During the design phase, the team conducted a series of future technology work sessions, seeking opinions from clinical leaders, medical equipment research and development teams, and IT experts in order to anticipate future developments in healthcare technology, effectively designing flexible rooms that could be equipped with technology that didn’t exist yet. 

For example, a vertical zone of removable curtail wall panels, known as “the zipper,” enables new medical equipment to be hoisted into the building. The selective use of long structure spans in procedure areas maximizes floor plate efficiency by created large zones of unobstructed floor area and enabling floor-to-floor standardization.

One of the Building Team’s key objectives was the implementation of the Last Planner System, which began during the foundation and superstructure phase in 2015. This collaborative approach produced a detailed master plan whose result was the completion of the building ahead of schedule. 

The scheduling was abetted by a “Clean Sweep” approach that organized each floor into three zones, each of which was treated as an independent handover. As a result, punch-list items were completed in half the normal time. Task forces were formed specifically to resolve punch-list and Department of Health-related items.

Other discussions among the Building Team and experts helped to identify changes and accommodations that made this project work. These include:

• Shifting the location of caissons and installing added grade beams to maintain the structural integrity of five sub cellars.

• Locating the diagnostic imaging department to the 7th floor rather than the basement, partly for purposes of sustainability;

• Locating infusion and radiation oncology departments on the 4th floor with daylight and views. Moving the LINAC Vaults to that floor required coordination among multiple trades to sequence installation. The infusion spaces range from private to community areas and are designed for a variety of treatment types. The surfaces installed in these rooms—made from wood, stone, and natural materials—are meant to evoke comfort and ease.

The building’s curtain wall is one of its distinguishing features.

On the clinical floors, wood screen was inserted into the triple-glazed assembly, along with an undulating frit pattern, giving the curtain wall—the first of its kind at this scale—its rich character. Each of the curtain wall’s 18×18-ft panels was initially loaded onto floors, staged, and installed using an outrigger system. For purposes of trade efficiency, the team eventually switched to using one of the existing tower cranes, a decision that increased production by 37%.

This strategy enabled a visually distinctive and highly sustainable curtain wall that recesses at the 40-ft-high lobby level to give the building institutional gravity and transparency. The lobby looks onto an adjacent garden at Rockefeller University, and its open staircase inside leads to a mezzanine with food service, seating options, and connection to the Integrative Health program. Gathering areas were designed with a welcoming, hospitality-like ambiance. 

The exterior edge of each floor plate is reserved for circulation and open areas, which provide occupants with natural lighting and views, even during infusion or when in transit to operating areas. The clinical floors, organized with perimeter circulation, give patients and visitors the opportunity to experience the façade on a more personal scale.

A clinical floor typically includes a sky lobby, 12 procedure rooms, and 36 private prep and recovery rooms, whose proximity minimizes patient movement. Operating rooms are accessed through a light-filled corridor. The operating suites and interventional procedure rooms are equipped with the latest in advanced medical technology.

This is New York City’s first hospital to be certified LEED Gold. A green roof covers 30% of the roof area, helping to reduce the urban heat island effect and to slow stormwater runoff. The curtain wall system is designed to mitigate solar heat gain and ensure interior comfort. 

Critical building systems and infrastructure that are essential to maintaining building operations during an emergency were located to protect and isolate them from hazards. Back-up systems and redundancy are incorporated into the design so that the hospital can deliver uninterrupted care during a severe weather occurrence. 

The Koch Center also showcases a fully integrated art program that hosts a diverse collection that includes a vibrant mosaic-tile wall by Brazilian artist Beatriz Milhazes that adorns the building’s patient drop-off area.

Planning Facilities for Telehealth

Ballinger Senior Principal Louis A. Meilink, Jr., FAIA, FACHA, ACHE contributed to the cover story of Health Facilities Management’s October issue. The article, “Planning Facilities for Telehealth,” describes considerations for designing healthcare environments that accommodate rapidly evolving technology. 

Excerpted from Health Facilities Management, a monthly publication of the American Hospital Association:

Remote provision of health care services — often referred to as telehealth or telemedicine — has grown in importance, especially with COVID-19-related restrictions on in-person interactions. 

“We know consumers want telemedicine,” says Louis A. Meilink Jr., FAIA, FACHA, ACHE, senior principal at Ballinger, a health care design firm in Philadelphia. “And from a space perspective, telemedicine can be anywhere, from primary and ambulatory care centers, cancer centers, emergency departments, patient rooms, and many other clinical and nonclinical spaces. Implementing telemedicine is a matter of having technology in the space where it’s needed and providing the supporting clinical care model, access and reimbursement structure.”

As Meilink notes, the range of telemedicine applications is broad. Remote clinical care encounters can include a physician with a patient in a hospital; a caregiver with a patient at home; a specialist with a patient and caregiver; caregivers meeting with each other; and remote monitoring of patients in a hospital or home care setting.

Consequently, the creation of effective telehealth spaces is today more important than ever, and telehealth should be considered early in the design phase of a new or renovated health care facility. That hasn’t always been the case, experts say.

“Telehealth is one of those things that has often been an afterthought,” says Bryan Arkwright, co-founder and chief research officer of Cromford Health, a digital health research and advisory firm. “But the facility issues are important. Those details can stop or slow a project.”

As a sign of this growing recognition, the Facility Guidelines Institute (FGI) Health Guidelines Revision Committee (HGRC) established minimum requirements for telemedicine spaces and offered additional recommendations supported by research and best practices in its 2018 Guidelines for Design and Construction documents for hospitals and outpatient facilities. 

Additionally, the brief telemedicine guidance provided in FGI’s 2018 Residential Guidelines has been expanded significantly for the 2022 edition.

Dedicated, integrated or mobile?

According to the American Academy of Family Physicians (AAFP) website, telehealth is different from telemedicine in that it refers to a broader scope of remote health care services than telemedicine. While telemedicine refers specifically to remote clinical services, telehealth can refer to remote nonclinical services and electronic information sharing, AAFP states. In practice, however, the terms often are used interchangeably.

Perhaps the first design decision that has to be made is whether the system will include dedicated spaces for telehealth; mobile carts that can be rolled from space to space; or telemedicine tools integrated into patient rooms, exam spaces, conference rooms or doctors’ offices. 

“Telehealth can be deployed in any room anywhere in a facility,” says Rebecca Lewis, FAIA, FACHA, CID, director of health care design for DSGW Architects in Duluth, Minn. “You can talk to someone on an iPad, a screen within an exam room or in an office space. You just need to know what’s the best spot to deliver the right kind of care.”

The decision about which form the telehealth facilities will take comes down to a number of variables, ranging from finances to the deployment strategy, with planning strategies including:

Teleheath carts. A hospital or outpatient facility with limited money available to invest in telehealth may choose to make it available on carts that can be wheeled from room to room as needed. Outfitting a cart may cost more than integrating telehealth equipment into a patient room, but using carts can save money because a relatively small number of carts can serve multiple patient rooms and other spaces. Carts can be cumbersome, and care needs to be taken with their cords, but cart-based telehealth is a viable solution for many facilities.

Integrated setups. Many hospitals have opted to build telehealth tools directly into patient rooms. Similarly, ambulatory health facilities that include telehealth sometimes integrate the tools into exam rooms or conference rooms. An integrated setup can be the most convenient, and the equipment — such as the TV monitor — can be used for other purposes when not needed for telehealth.

Kaiser Permanente has integrated telehealth equipment into some of its patient rooms and uses telehealth carts to serve others.

“Our newest hospital, Kaiser Permanente San Diego Medical Center, is equipped with monitors and two-way videos in each of our patient rooms,” says Angelene Baldi, AIA, EDAC, executive director of facilities strategy, planning and design for Kaiser Permanente and a member of the HGRC. “This can be used for telehealth appointments and is also used for entertainment, educational programs, food orders and more. In our older facilities, we use mobile video carts that can be wheeled into patient rooms for video appointments. These serve a dual purpose and can also be used as charting stations for nurses and clinicians.”

Kaiser Permanente’s telehealth program — which is currently handling 55% of the system’s ambulatory care visits — puts a premium on flexibility, says Zack Ryan, executive director of information technology capital project delivery. He says the facilities are designed to allow physician and patient interactions in a wide variety of situations.

“These tools need to be available to both our members and our providers in as many different situations and modalities as possible in order to deliver the optimal digital experience that can truly augment our in-person interactions,” Ryan says. “Our telehealth platform is built so that a provider can take their appointments and ad-hoc visits from their office, clinical spaces, home or other remote locations on a variety of devices. We also created this flexibility for our members and patients.” 

Dedicated spaces. Dedicated telehealth spaces take several forms. Some are designed exclusively for caregivers treating patients remotely, while others are set up so patients and caregivers can be in the dedicated room together and access another caregiver — a specialist, for example — via the telehealth equipment. The advantage of a dedicated space is that everything in the space can be optimized for telehealth.

At least one facility, Mercy Virtual Care Center in Chesterfield, Mo., is entirely composed of dedicated spaces. According to Mercy’s website, caregivers at four-story, 125,000-square-foot Mercy Virtual facility provide around-the-clock supplemental assistance and monitoring to caregivers in the 43 hospitals that make up the Mercy system and other facilities outside Mercy.

However, in some cases, dedicated spaces are not used enough to be worthwhile, says Patricia Shpilberg, M.Arch, vice president of planning and development for MedCraft, a health care real estate development firm headquartered in Minneapolis. She adds that access and ease of use are as essential for providers as they are for patient adoption of the technology.

“We had a client who had dedicated telehealth spaces away from their clinics and offices for providers to use during their virtual care sessions,” Shpilberg says. “The result was a limited adoption rate due to the disruption to their workday. Once the hospital integrated telehealth systems into the office work environment, the provider adoption rate started to rise.”

“There are a lot of times the patient is not present in an initial complex case discussion between providers in different specialties, so that’s why that larger telehealth suite was developed: to allow for ease of use and connection with multiple caregivers,” says Jennifer Ruschman, senior director of the center for telehealth at Cincinnati Children’s Hospital. 

Cincinnati Children’s Hospital has a mix of telehealth systems, but their mix includes several dedicated spaces, including a telehealth conference room that seats 18 to 20 people.

Sometimes a facility simply can’t afford to set aside space solely for telehealth, says Lewis, who regularly works with small rural facilities where budget is limited. In those facilities, a conference room or exam room might be optimized for telehealth but made available for other uses when it’s not being used for telehealth.

Regardless of whether a facility opts for dedicated, integrated or cart-based telehealth, experts say flexibility is essential.

“You need to build in flexibility because technology changes constantly,” Meilink says. “Especially on larger projects, the technologies you’re designing for in year one or two may not be what you’re going to install in year five when the building opens. You need to consider infrastructure — such as wireless technology and systems pathways — that enables future changes, including accommodating technology that doesn’t yet exist.”

Ryan says that is exactly how Kaiser Permanente thinks about its telehealth installations.

“It’s challenging to build for the future, with rapid development and changes in technology,” Ryan says. “The building timeline for hospitals is around five years, from design to opening, and telehealth solutions, use cases and infrastructure are very fast moving. The key to success is to plan and design hospitals for what you want the future patient experience to look like, and to create room for flexibility in the design and technology capabilities. 

“Kaiser Permanente strives to enable all of our new facilities to support telehealth, rather than only building these requirements into specific projects,” Ryan says.

Design practices

Many design elements of a telehealth program are similar regardless of whether the equipment is on a cart, integrated into a patient room or doctor’s office, or set up in a dedicated telehealth space. Every telehealth endpoint — that is, where the system connects to a caregiver or a patient — should meet some basic best practices to ensure an ideal experience for all involved parties.

Arkwright says that the standards used by the film industry — such as good lighting, proper acoustics and effective camera angles — should apply to telemedicine as well. 

“Imagine the professionalism CNN or ESPN takes in its productions,” Arkwright says. “Sometimes just the opposite goes on in telehealth. You can beam into a health system and the lighting is terrible, the background is dark, the doctor’s face is washed out and they’re hard to hear. Compare that to when everything is optimal or professional grade. That’s probably the difference between a patient perceiving, ‘This is high-quality care or not.’ These little things are important.”

The following guidelines apply regardless of the endpoint — a patient or exam room, a physician’s office, a conference room or a dedicated telehealth space:

Room size. With the right technology, telehealth can be deployed in any size room. Thus, a facility that is renovating an existing space to accommodate telehealth can create a program regardless of how small the room is. However, in a newly designed space or a renovated space that can be expanded, a larger size is desirable. The FGI Guidelines suggest that “the room should be large enough for the patient and the patient presenter, if one is present, to move about comfortably. The patient should be able to sit in a chair as well as use the examination table … Where the examination includes gait evaluation, the room should provide sufficient space for this activity to be captured by the screen.”

Surface colors. The space should be painted in a nonglossy, neutral color. Light blue or light gray work particularly well, Arkwright says. “White can be a little sterile or too bright, and yellow doesn’t do well on camera,” he says. “If the patient room is painted yellow, the patient might look like they have jaundice.”

Ruschman says they considered paint color carefully when designing the dedicated telehealth spaces at Cincinnati Children’s Hospital and came up with a combination of colors that looks good on video and blends well with the hospital’s brand color palette. 

Lighting sources. Ideally, the light source should be bright and positioned in front of the subject — the patient or the caregiver — so that it illuminates the face clearly. Natural light is good for accurately rendering color, but it’s difficult to control, so if the space has windows, make sure they can be covered when the natural light is not flattering. 

At the Liberty Campus of Cincinnati Children’s Hospital, which features telehealth equipment in each of its 40 patient rooms, natural light is controlled by blinds. “We don’t want to limit the natural light in patient rooms, but it can cause shadows, so we address that as part of our training,” Ruschman says. “We teach users how to do a self-view check — if it’s not good, they pull the blinds.”

Regardless of the light source, it should be balanced and distributed, says Ellen Taylor, Ph.D., AIA, EDAC, vice president for research at The Center for Health Design in Concord, Calif. “You need frontal lighting so there are no shadows,” says Taylor, who is a member of the HGRC. “But you also don’t want someone to look washed out, so depending on the task and type of treatment, the color and brightness of the light matter, too.” 

A technical measure of how well a light bulb renders color is the color rendering index (CRI), which ranges from 0 to 100. Natural sunlight is 100, and a dim streetlight is about 0. Sometimes CRI is not indicated on a lightbulb package, but if the bulb has a CRI of 90 or more (which is preferable), it usually will say so on the package. The FGI Guidelines call for lights in telehealth spaces to be warm, white light — 3,200 to 4,000 Kelvin. 

Endpoint background. Designers should consider the background of a TV newscast — if it’s not an image related to the newscast or the network logo, there’s usually not much there. That’s because the network wants the viewers to pay attention to the anchor, not the background. Designers should have the same goal for the background of the caregiver endpoint; it should be neutral enough that the patient pays attention to the doctor, not a cluttered bookshelf in the background. 

“You want to make sure that whatever the patients are seeing behind the provider is a good image for your system,” Shpilberg says. “Sometimes that space is used for branding or education.”

Acoustic issues. There are two issues to consider in telehealth regarding acoustics: privacy and clarity. Privacy can be addressed by making sure the door to the space, whether it’s a patient endpoint or caregiver endpoint, can be securely closed and that it blocks sound. 

“It’s about making the patient feel like they can share information privately,” says Lewis, who also is a member of the HGRC. “Doors can be the weak point with acoustics, so perhaps you shouldn’t locate the door on a busy corridor — perhaps around a corner is better. Simple things like that can add to the feeling of privacy and make the patient more comfortable.”

Acoustic clarity results from a combination of the design and construction of the room and the technology used by the telehealth system. The designers of the dedicated telehealth spaces at Cincinnati Children’s Hospital included acoustic paneling on the walls to optimize the acoustics, Ruschman says. 

Getting technology right

The heart of a telehealth system is the technology that connects the two or more remote participants. Getting that technology right can make the difference between success and failure.

Every telehealth system incorporates a monitor — or multiple monitors — of some type, and monitor technology is constantly advancing. However, putting the monitor in the right place and at the right angle is essential regardless of how advanced the monitor is. The screen should be installed so the patient can comfortably look straight on to the care provider, as if they were in the room. “You want the monitor at eye level, as if the provider were sitting right in front of you,” Shpilberg says. “You want to make it feel as real as possible.”

The position of the camera that is capturing the image — on both sides of the interaction — is equally essential, whether the camera is separate from the monitor or integrated. 

“There was a fascinating study done in 2007 by Tam and colleagues that looked at gaze angle, and at 7 degrees there was a perception that the person was happier, warmer, more approachable, more interested,” Taylor says. “At 15 degrees, it’s starting to look down, and the perception was somebody was sad, depressed, or timid or hiding something. So, imagine a behavioral health visit where just the angle of the camera gives you a different perception of what’s happening with that person.”

Another technological aspect of the camera that is important is whether the caregiver can control the camera at the patient endpoint, which allows them to zoom in on a particular part of the patient. 

“The remote camera control is one of the bigger challenges,” Ruschman says. “The far-end camera controls are really important to our clinicians, because they want to pan and tilt and zoom in and out. This lets them see the nonverbal cues.”

As with the camera, getting the microphone and speaker set up correctly is essential. The microphone built into monitors may be good enough for normal Zoom meetings, but Arkwright recommends a separate external microphone for better quality audio. Similarly, he recommends separate speakers — or even noise-canceling headphones — to maximize sound quality.

At the Liberty Campus of Cincinnati Children’s Hospital, separate speakers and microphones are mounted above the patient beds for maximum audio clarity, Ruschman says. But they’re working on a new health care facility, and they may integrate the audio equipment into the monitor because that technology has improved, she adds.

All telehealth systems rely on a strong internet connection. In some cases, Wi-Fi is good enough, users say, but a wired connection is always more reliable.

“We prefer to use hardwired where we can,” Ruschman says. “But most of our telehealth carts run on Wi-Fi. So, we train folks on how to get a hardwired connection, but we’ve found that usually the carts run pretty well on Wi-Fi.”

Ready for change

The facilities issues surrounding telehealth are complex. The key, those involved say, is building spaces that can accommodate today’s technology while being prepared for it to change.

Maternity Center Offers Privacy and Distancing to All

Local news station NY1 covered the opening of the NewYork-Presbyterian Alexandra Cohen Hospital for Women and Newborns, a 246,500 SF hospital within the David H. Koch Center.

Excerpted from NY1:

Inside the new Alexandra Cohen Hospital for Women and Newborns it’s all about care and comfort.

Dr. Laura Riley offered an exclusive look inside the new facility at New York Presbyterian David H. Koch Center which features 75 all-private antepartum and postpartum rooms which hospital administrators realized would be a benefit to treatment when the pandemic hit as the project neared its completion.

“We realized that this space is going to be even better for us because with the pandemic we needed women to have private rooms,” said Dr. Riley, Chief of Obstetrics and Gynecology.

It’s a feature moms-to-be like Lucy Bai say will provide some peace of mind when she delivers her baby, knowing that social distancing is incorporated into the design.

“I think it’s definitely put me at ease now a little bit more than it did before because we do know a little bit more about this virus” said Bai. “We do know that wearing masks are effective. I’ll be wearing a mask. I know the doctors and nurses will be wearing a mask,” she said.

Families whose babies are being treated in the Neonatal Intensive Care Unit will also have their privacy. Riley says everything is state of the art to give mom and baby the best start.

“Having that private space from the time that you come in to the time that you leave I think is really special, it also allows us to really personalize the care” said Riley.

And now with triple the space currently available at the hospital, administrators expect to handle around seven thousand births per year once the center opens on Sunday.

Fon Wang on What Inspires Her

To celebrate National Historic Preservation Month, Philadelphia’s Preservation Alliance asked 31 historic preservation leaders to describe a building that inspires them. Ballinger’s Director of Historic Preservation, Fon S. Wang, AIA, LEED AP, wrote about her enduring affection for the Fleisher Art Memorial.

Link to article

Christina Grimes Interviewed on the Role of Architects in a COVID-19 World

How can architects play a role in meeting the urgent demands of the COVID-19 pandemic? Ballinger Associate Principal and Director of Healthcare Planning, Christina Grimes, AIA, LEED BD+ C, EDAC, ACHA, was interviewed by PlanPhilly, a reporting project of the public media organization WHYY, about remaking spaces for our new socially distanced lives.

Read the full article on WHYY Philadelphia

University of Maryland Baltimore County Project Featured in Context Magazine

Ballinger’s Interdisciplinary Life Sciences Building at the University of Maryland Baltimore County was featured in the Spring 2020 issue of Context, a quarterly magazine published by the Philadelphia Chapter of the American Institute of Architects. The issue is dedicated to the concept of collaboration.

The design profile focuses on the collaboration between UMBC, Ballinger and Volkan Alkanoglu, the artist responsible for “In Flight”, a dynamic installation in the building commons.

Read more here

Fabulous Fascitelli Engineering Center at URI

Architecture critic William Morgan reviewed the University of Rhode Island’s Fascitelli Center for Advanced Engineering, designed and engineered by Ballinger.

Excerpted from GoLocalProv:

The University of Rhode Island’s Fascitelli Center for Advanced Engineering handsomely demonstrates that bold new architecture is not just the purview of Ivy League schools and their private brethren like RISD and MIT.

Colleges and universities can be the places to view the latest work of starchitects. Institutions like Yale, Princeton, and MIT have become architectural petting zoos, with strutting displays of egotecture.

State schools are often less likely to be laboratories of avant-garde architecture. Yet public universities–the Michigans, Ohio States, Californias–are also commissioning notable design.

New England may be the incubator of higher education in this country, but architecturally our state universities have lagged somewhat behind. The $125,000 million Fascitelli Center demonstrates that that is changing.

At the University of Massachusetts, Amherst, for example, New England’s only public architecture school moved into the first academic building in the United States made of cross-laminated-timber, designed by Leers Weinzapfel, while the business school just opened an innovation hub by Bjarke Ingels Group, one of the world’s most daring firms.

URI’s engineering program, once scattered across the campus in a various structures is now housed in one striking 190,000 square feet steel and glass structure that has become the center of gravity for the Kingston school.

The L-shaped, five-story engineering building is in marked contrast to the rest of the campus. Except for the attractive Westerly granite structures in classic post-Civil-War-state-college style surrounding the common, URI’s design identity has been undistinguished.

In part because of a new master plan by Ballinger, architects of the engineering building, works like the Wellness & Fitness Center, an imaginative remake by Kite Architects of a 1965 dining hall, are beginning to offset less inspiring projects such as the URI Foundation’s home, which looks like a bloated McMansion, one with rams horns capitals.

But the missteps of the past fade when one enters the sparkling, light-collecting Fascatelli Center. Its strong, clean lines and pristine glass and metal surfaces are the perfect metaphor for a research center that explores the physical aspects of our world from civic and environmental engineering to Nano-technology and cyber-security.

As Terry Steelman, senior principal at Ballinger and project designer, says, Fascitelli “propagates the notion of engineering as a bridge between liberal arts and the sciences.” A 210-foot-long truss that spans the ground floor reinforces the bridge theme.

Beneath that span is a transparent rectangle sheltering a student gathering space with a cafe. Because of the trussing system, this large open social center supports nothing above it, so one can see right through this open space to the other side.

Visible diagonal trusses show through the glass walls. This bracing system allows classrooms and research laboratories to be unencumbered with vertical columns.

Hallways along the exterior perimeters of the white-painted trusses provide the school’s most endearing feature: a hawk’s-eye view the campus and the South County countryside.

Philadelphia-based Ballinger has a reputation as designers of technically complex science buildings, and have worked at Penn, Cornell, Johns Hopkins, and many other schools. There are no frills here, no gimmicks, just a focus on good design delivering the best educational engineering facilities.

Brown missed such an opportunity for a bold glazed design when Ballinger’s original proposal for the Sidney Frank Hall for Life Sciences was unfortunately clad in brick to appease College Hill neighbors more interested in a false notion of context than encouraging exceptional design.

At URI, however, the emphasis on natural light transforms what might have been just another science building. Architect Steelman is particularly proud of the glazing that wraps the fifth floor. This unitized curtain wall has an acid-etched first surface and a white fret as the second surface. Light filtered through this scrim is ever changing.

If we imagine the Fascitelli Center as a brilliant gesture at re-branding the university, it tells us loud and clear that URI is a place that will lead to, in the words of President David Dooley, “discoveries that we cannot even imagine today.”

GoLocal architecture critic Will Morgan has written extensively about university design and is the author of Collegiate Gothic: The Architecture of Rhodes College.

Main Line Today Highlights Radnor Development

Main Line Today published an article highlighting 155 Radnor, the Ballinger-designed workspace development led by Brandywine Realty Trust, and included remarks from Senior Principal Eric Swanson, AIA.

Excerpted from Main Line Today:

If you ask Jeff DeVuono why there hasn’t been any new office development in Radnor Township for nearly 30 years, he’ll provide a simple, clear answer: “It’s not a lack of interest in developing office space, it’s a lack of available land.”

The Brandywine Realty Trust executive vice president and senior managing director for Pennsylvania understands that, when it comes to Main Line real estate, it doesn’t get any better—or more crowded—than Radnor. But as a key component on the Brandywine team for 155 Radnor, DeVuono is pretty excited about the project, which is set to debut later this year with 145,000 square feet of rentable space, plus a luxury hotel. “If you look at the statistics, Radnor is the only market in the Pennsylvania suburbs that has single-digit vacancies,” he says.

The new development is part of the 26.6-acre Penn Medicine campus, which is also a Brandywine venture. Located on King of Prussia Road, it’s convenient to the Route 100 SEPTA light-rail and Paoli/Thorndale lines, and within easy driving distance of the Blue Route and Schuylkill Expressway. Throw in the robust retail climate in the area—plus housing and school options that are among the best in the region—and the new complex has one of the better addresses around. “It’s also where decision-makers live,” DeVuono says or Radnor’s impressive roster of residents.

Satisfying one of real estate’s biggest needs—location—155 Radnor also has a substantial advantage in terms of its design, which was helmed by Philadelphia architecture firm Ballinger. It emphasizes productivity, quality of life and the ability to feel comfortable in the workplace. The latter has become an increasing necessity as businesses devote more time and resources to attracting and retaining talent. DeVuono likens the process for new employees to the college search his children are undertaking. “They go on a campus and they don’t know what they like about it, but they want to be there,” he says.

Inside, the 155 Radnor complex will feature high ceilings, large windows, attractive views and open spaces. Outside will feature the same walking paths, outdoor seating, biking/walking trails, work areas and gardens that have become so popular with residential and commercial developments. It’s no longer enough to have a nice chair. Workplaces need to be comfortable and pleasing, or their employees won’t want to be there. “Everything is about the live-work-play environment,” DeVuono says. “People also want to stay healthy and connected.”

Eric Swanson is the lead architect on the 155 Radnor project. “You don’t know what Biophilia is?” he poses “It’s the theory that all of us humans, because of our long evolution, have an innate affinity for nature. People in health care understand the benefits of nature in healing and well-being.”

Since 155 Radnor is part of the Penn Medicine campus, it makes sense to give it a look that helps those who work there integrate more easily with their natural surroundings. That’s why the building will be primarily glass, and make use of a parking garage rather than acres of lots to maximize green space. There will be plenty of room to roam, meet, eat and think outdoors—a sure benefit in the warmer months when the urge to spend time in the sun increases.

Such designs are a break from the norm established in the last two decades, which favored emphasizing interior congregating places. Although there will be plenty of productive space inside for collaboration, there will always be an opportunity to enjoy some natural light and views of nature.

“The modern workforce is looking for these amenities,” says Swanson, who’s been with Ballinger for 35 years. “If you look at the campuses for Apple and tech companies out West, they attract talent by being good places to work, but also by providing ways to take breaks from work, without having to leave the area.”

Those who work at 155 Radnor won’t have much use for the hotel, but the property will fill a need for the companies inside the development, along with others in the area. “Everything is about the live-work-play environment—and the hotel is part of that,” says DeVuono, who expects several different tenants in 155 Radnor.

The first floor is somewhat adaptable to the needs of a company, while the other three are more set in their layout. There will be no retail component to the building, which is a function partly of the amount of offerings close by. It’s also due to the fact that Brandywine Realty Trust doesn’t want to lock itself into a particular formula that may not allow for flexibility later. “We want a physical space and infrastructure that can adapt to future needs,” DeVuono says.

Brandywine has focused on making sure the bones of the building will be as modern as possible—and that includes power, water and HVAC infrastructure. It should come as no surprise that Brandywine is labeling 155 Radnor a “trophy class” property—a building that offers the broadest amenity base. And while that may sound like a somewhat arbitrary appellation, it’s one the new folks in the game can claim as they move the design model forward.

Engineering for a New World

The University of Rhode Island Magazine covered the opening of the Fascitelli Center for Advanced Engineering, designed and engineered by Ballinger.

Fall 2019 Magazine Cover

Excerpted from the University of Rhode Island Magazine:

The largest construction project in University history, The Fascitelli Center for Advanced Engineering opened its doors this fall, bringing all the engineering disciplines together in a space that actively supports hands-on, interdisciplinary research and defies departmental silos. The center features state-of-the-art research labs, student-oriented open space, and bold, modern design–transparent, airy, and centered around common work areas.

By Janine Liberty

From the smartphone to the Large Hadron Collider to France’s Millau Viaduct, some of the world’s greatest engineering marvels have been created in the last 20 years. Rapid advances in technology and material sciences have changed not just what’s possible in engineering, but what’s imaginable. Engineers are at the center of an era defined by unprecedented technological capabilities, and their creative and practical achievements are shaping the world in entirely new ways.

Collective Purpose

Just before classes began this fall, a group of engineering professors gathered in The Fascitelli Center for Advanced Engineering. Representing the full engineering faculty, this group comprises 22 of the college’s 74 faculty members, whose research and teaching will be shaped by the open space, transparent walls, and bridge-like architecture of the new facility.

Engineers are unique. Equal parts creative visionaries and doers, they are able to imagine technologies that will advance human potential, and construct the framework that will transform their ideas into reality. These engineers are also teachers, mentors, and guides—showing the next generation, who will be faced with some of the biggest problems the world has ever known, how to engineer solutions.

A New Space for a New Era of Research

URI’s College of Engineering is positioned to push the rapidly expanding boundaries of science and technology, and its new home, The Fascitelli Center for Advanced Engineering, is designed for this new era. With the opening of The Fascitelli Center for Advanced Engineering this fall,” says College of Engineering Dean Raymond M. Wright, “students can be educated differently, and researchers can collaborate more easily across disciplines.”

“This new facility will stimulate collaborative, multidisciplinary learning and research. It will lead to discoveries that we cannot even imagine today.”
–URI President David M. Dooley

“Increasingly, our engineering students and faculty are not only working in interdisciplinary teams within the college, but with students and faculty from across the University in oceanography, health, pharmacy, chemistry, computer science, and business as well as companies and corporations around the state, region, and the world,” URI President David M. Dooley says.

During preliminary meetings with the project’s principal architect, Terry Steelman, of the firm Ballinger of Philadelphia, Wright explained that he wanted to bring faculty together through research areas, not departments or disciplines. “One thing we know for sure is when we bring people together to solve challenges, it gets done,” says Wright.

The college will be organized around critical interdisciplinary research themes that address some of the biggest challenges the world faces: alternative energy, nanotechnology, robotics, cybersecurity, water for the world, biomedical technology, advanced materials and structures, and sensors and instrumentation.

The Fascitelli Center will support and encourage this interdisciplinary research by physically locating faculty from different disciplines near one another and adjacent to common research and meeting spaces. “Almost nothing in engineering anymore exists solely within a single discipline,” says Steelman. “This building is designed not just to advocate for, but to stimulate interdisciplinary discovery, so students can be educated differently, and researchers can collaborate across disciplines.”

“When the engineering disciplines combine, the sum is greater than its parts. URI engineering is building the future.”
–Dean Raymond M. Wright

“Our faculty are designing and building the infrastructure modern society relies on; finding innovative ways to harness energy from our sun, ocean, and even highways; building new medical diagnostic methods and devices; and racing to ensure every man, woman, and child has access to clean, safe water,” says Wright.

“This new facility will stimulate collaborative, multidisciplinary learning and research. It will lead to discoveries that we cannot even imagine today,” Dooley adds.

The new building was funded by two Rhode Island voter-approved bond issues, as well as private gift commitments from corporations including Toray Plastics (America), Inc.; FM Global; Taco; Hexagon; and Shimadzu; and from individual donors, including a $10 million gift from College of Engineering alumnus Michael D. Fascitelli ‘78, Hon. ‘08, and his wife, Elizabeth Fascitelli.

Learning Through Hands-On Research and Fieldwork

Working in robotics is like the Wild West in terms of the opportunities it presents,” says engineering student Robin Hall ‘20. “It’s always innovative, always changing, and there is always something new to work on.” Hall sits in the Intelligent Control and Robotics Lab surrounded by unmanned aerial vehicles (UAVs), robots, spare wires, and computers.

Situated on the fourth floor of the new engineering building, the robotics lab opens up to an expanse of glass that encloses the exterior hallway. From inside, you can look out over the northern edge of the Kingston Campus to the woodlands beyond. Hawks soar above the distant treetops, in effortless flight, while research teams inside devise robotic systems capable of agile, aerial movement.

“Working in robotics is like the Wild West in terms of the opportunities it presents.”
–Robin Hall ’20

This year, Hall has an independent research grant to develop a wall-traversing drone. “My idea employs a four-propeller UAV surrounded by an external cage that can rotate independently from the internal body of the robot. The cage will protect the vehicle and maintain stability.” Working with existing drone and cage designs, Hall’s innovation is to fix two axes and add a motor to the third axis to control the movement. “The quadcopter will behave like a wheel, rolling laterally against a wall surface.”

He’ll work with Paolo Stegagno, assistant professor of electrical, computer, and biomedical engineering, as his grant adviser. “As he designs and tests his UAV, Robin will gain advanced knowledge of control systems,” says Stegagno.

More research involvement–such as Hall’s–at the undergraduate level is important to the college; it means higher-quality senior projects, better internships, and more opportunities for students at all levels to learn from one another. Senior capstone projects are team-oriented and industry-driven, focusing on real-world challenges companies bring in for senior-year students to work on over the course of the academic year.

Making the capstone projects highly visible is meant not only to benefit students, but to attract industry. The projects are already an important point of entry for industry partners, having reliably translated to employment for graduates as well as research and economic partnerships with the University.

College of Engineering alumnus W. Lewis Collier, M.S. ‘86, Ph.D. ‘14, rapid engineering and prototype systems engineering manager for the MIL Corporation, and former technical director at Navmar Applied Sciences Corporation, supervised URI engineering students doing capstone projects at SRI International. He says URI’s capstone program “offers a valuable opportunity for students to apply and hone their engineering skills and learn about real-world problems and how engineers operate in the field.” Adds Collier, the program “is also important to the University’s mission to provide educated workers for Rhode Island businesses.”

A New Space for a New Era of Research

Great design is achieved through a balance of opposites. This 190,000-square-foot, five-story engineering building is a tour de force of design.

During the day, light streams throughout the enormous expanses of open space, constantly shifting in color, shadow, and intensity as it passes through surfaces of varying opacity. This effect is balanced by the density and stability of the building’s metal truss support system–which eliminates the need for interior support columns and allows for uninterrupted, open interiors–and sleek concrete floors.

“The glass of the building is both a metaphor and a physical manifestation of transparency and collaboration.”
—Dean Raymond M. Wright

The trusses, which span more than 150 feet of open space inside and are visible from the exterior of the building, are like those used for bridges, giving the building a bridge-like appearance, which emphasizes its physical siting between the older, humanities-focused buildings in the center of the Kingston Campus and the newer, science and technology-focused buildings on the north edge of campus.

In the new building, capstones will be a significant and highly visible part of the activity. More importantly, points out Wright, students from different research themes will be working in the same space. “You’ll have civil engineering and mechanical and biomedical capstone projects happening side by side.” In the building’s design, the Ballinger team combined the majority of the teaching environments on the first floors, so that students will be exposed to the interdisciplinary nature of the building.

“The quad level is a remarkable place,” says Wright. “We want our students to recognize that it’s their home. There are no faculty offices or research offices on that floor. It’s all about showcasing the hands-on aspects of engineering and building a creative atmosphere for students.”

Great architecture must also balance the experience of the individual with a collective purpose. Fascitelli credits Wright’s vision of bringing the college’s departments together as the driving force behind the building design. “Science as a whole has become so much more interactive, and the world is changing at such a rapid pace,” says Fascitelli. “You really need that cooperation between disciplines.”

Says Wright, “The glass of the building is both a metaphor and a physical manifestation of transparency and collaboration.”

“There’s nothing like this building in our portfolio. It’s unique to URI and I’m really proud of that,” says Steelman, adding that the center is “one of the most provocative and technologically advanced engineering buildings in the country.”

Hall is inspired by the new engineering space. “Being able to work in this space is an amazing upgrade,” he says. “It’s like a temple. It feels like you have the opportunity to do anything here.”

Ballinger 4 Billion Boom

Three new Ballinger projects, Penn Medicine Chester County Hospital’s expansion, Children’s Hospital of Philadelphia’s King of Prussia hospital, and Grand View Health’s new patient care building, were highlighted by the Philadelphia Business Journal in an article posted on November 1.

The article, titled “$4 Billion Boom,” describes the Philadelphia region’s current explosion in hospital construction and explains how a crop of new healthcare projects will create thousands of jobs in construction and healthcare. The work represents a shift to more outpatient settings and shortened inpatient stays, as well as the role of the consumer in selecting healthcare providers and facilities.

Link to article in the Philadelphia Business Journal

Commerce Secretary on Fascitelli Center: “We Will Power the Economy”

The Providence Journal covered the ribbon cutting ceremony for Ballinger’s Fascitelli Center for Advanced Engineering at the University of Rhode Island. During the event, Rhode Island Secretary of Commerce Stefan Pryor described the importance of engineering in the state, “Rhode Island is a place that engineers and builds things. We have throughout our history, but it’s part of our future as well. It’s a central part of our future. We are thrilled that there’s an engineering school that is of such an outstanding standard. Through this school we will create pipelines of talent that will serve our corporations. We will create great opportunities for our emerging young professional engineers, and we will power the economy.”

Link to article

Science + Engineering Hall Profiled by George Washington University

Ballinger’s Science + Engineering Hall was the subject of a profile by George Washington University’s School of Engineering and Applied Science (SEAS).

Excerpted from SEAS website:

First-time visitors to GW’s new Science and Engineering Hall (SEH) push open the doors at any one of its entrances and are immediately struck by the light-filled and open commons spaces. And when they glance down to the atrium below—which they always do—they can’t help but notice the vibrant display of its green wall, one of the building’s three. And then, as they start to make their way through the building, they usually do a double-take at the glass walls, designed to be written on and covered with equations, lines of computer code, or simple lists of processes and tasks.

What most impresses them, however, are the labs and the classrooms—the spaces where SEAS students and faculty teach and learn, discover and invent. These are the spaces where we work, and the new SEH is changing the way we do that. In the process, it is proving to be exactly what we expected it to be: the enabler of our ambitions.

Research

Some say that “seeing is believing.” And it’s true that being able to see the gleaming, new, state-of-the-art, eight-story building standing at the intersection of 22nd and H Streets certainly helps one understand the myriad new research possibilities that the SEH creates for SEAS faculty. No one sees the possibilities more clearly than the researchers themselves and the aspiring faculty candidates we meet each semester who are competing for a chance to teach and research in the SEH.

Even during the building’s planning and construction phases, the SEH was a powerful magnet, drawing in the talented and dedicated faculty SEAS has recruited recently. These are assistant, associate, and full professors who saw the possibilities for their research to flourish at GW and chose to start their careers here, or leave very well established labs at other universities, to work alongside new colleagues in the SEH.

With access to the state-of-the-art core facilities—the high bay, nanofabrication lab, and microscopy suite—and a host of other labs, these recently recruited faculty are building thriving research programs and driving record research success for SEAS.

Zhenyu Li in lab with studentsAssistant Professor Zhenyu Li, a member of the new Department of Biomedical Engineering faculty, received a four-year, $2 million National Institutes of Health research grant this past fall to develop ambulatory sensor arrays to monitor children with asthma. He will work on this highly innovative project with colleagues in the Department of Electrical and Computer Engineering and the Children’s National Medical Center. Using the building’s ultraclean nanofabrication lab, Dr. Li will be able to design, build, and test these and other sensors on site, something previously impossible for GW researchers. Less time(and frustration) spent working at outside facilities means more time and faster turnaround for Dr. Li’s research.

Like Dr. Li, Assistant Professor Volker Sorger of the Department of Electrical and Computer Engineering also is prospering in the SEH nanofabrication lab. Dr. Sorger studies photonics, which is optics integrated on a chip, to create the nanoscale chips necessary to develop computers that will operate on light rather than electronics.

Professor Sorger in his nanotechnology labAs a doctoral student, he was part of a University of California-Berkley team that used a technique called plasmonics to create the world’s smallest semiconductor laser, and he is continuing that research here at SEAS. His efforts have been very fruitful. In just over 16 months, he has won three Air Force Office of Scientific Research grants—including a prestigious Young Investigator Program award—and a National Science Foundation (NSF) grant. Together, these grants total more than $2 million.

Associate Professor Lijie Grace Zhang studies novel 3D bioprinting techniques to help advance the development of tissue and organ replacements. Being able to regenerate complex tissues, such as vascularized bone, cartilage, and muscle, is one of the current obstacles researchers face to creating human organs using 3D printers. This is where Dr. Zhang’s highly innovative research is making its mark: in 2014 she received a five-year, $2.2 million Director’s New Innovator Award from the National Institutes of Health (NIH). The NIH awards these very prestigious grants to support unusually creative researchers early in their careers.

Dr. Zhang’s colleague in the Department of Mechanical and Aerospace Engineering, Dr. Kausik Sarkar, stands to benefit greatly from the SEH microscopy, or imaging, suite. A full professor, he conducts research on ultrasound imaging, drug delivery and therapy, and high-fidelity simulation of blood rheology. In addition to his existing grants from the NSF and NIH, Dr. Sarkar won a four-year, $1.2 million R01 grant last fall from the NIH. He and his colleagues will study ultrasound imaging and the delivery of anticancer drugs to prostate cancer tissues.

A number of other recently recruited SEAS faculty do not conduct their research in the SEH core lab facilities but profit from the building’s other lab spaces or simply from being able to collaborate more easily with their SEAS colleagues, now that the school’s six departments are housed under one roof.

Instead of a six-block walk across campus to visit SEAS faculty from other departments, the faculty of the Department of Engineering Management and Systems Engineering now take the stairs or elevators to collaborate with them. The accomplishments of two of the department’s more recent hires, Assistant Professor David Broniatowski and Assistant Professor Zoe Szajnfarber, also demonstrate the record research success that SEAS is enjoying in the new SEH. Dr. Broniatowski recently received a $1.5 million R01 grant from the NIH’s National Institutes of General Medical Sciences for his survey research on attitudes about getting vaccinated, and Dr. Szajnfarber was most recently awarded a nearly $1 million INSPIRE grant from NSF. INSPIRE is a special grant that supports highly interdisciplinary research that has unusual transformative potential.

Photo of the high bay in the science and engineering hall
Enrollment

New faculty are not alone in understanding the benefits the SEH brings to engineering at GW. Prospective students seem to understand it, too.

Undergraduate enrollment has risen 50 percent over the past six years. As of fall 2015, it stood at 880 students, with particularly strong growth in our computer science, biomedical engineering, and mechanical engineering programs. And we are particularly proud that 38 percent of our undergraduate students are female, almost twice the national average for engineering schools.

Student Studying in the SEHSystems engineering, the school’s newest undergraduate program, also has shown remarkable growth, increasing from approximately 20 to 120 students in just five years. With the large number of engineering consulting firms in the Washington, DC-Metro area, job prospects for these students is proving to be excellent.

At the graduate level, enrollment is also very strong and will continue to grow as we add new online degrees in our professional engineering program. The first of these, a doctor of engineering degree in engineering management, was initiated in August 2015; by summer 2016 we anticipate an enrollment of 100 working professionals. To meet the strong need, particularly in the US, for biomedical engineering professionals who understand the regulatory process and can advance medical device and imaging diagnostics and therapies to market, we have created a second new program, a master of engineering in regulatory biomedical engineering. This program—which draws on faculty in SEAS and in GW’s medical, public health, and law schools—started in spring 2016 and already is off to a good start. It is a truly interdisciplinary degree program with enormous potential, not just locally, but nationally and internationally.

Fundraising

If success, in fact, breeds success, then the SEH also should help attract new investment in SEAS. The numbers suggest that this already is happening, that the SEH is acting as a beacon to do just that.

SEAS has achieved record fundraising levels in the last six years, the period after the university’s announcement of its commitment to build the SEH. Funds raised by the school in fiscal year 2015 were more than quadruple those raised in fiscal year 2010, and the trend shows a steady increase throughout the six-year period. The school also far surpassed what it achieved in the previous six-year period, fiscal years 2004 through 2009. Compared to that period, SEAS nearly tripled its fundraising during the current six-year period.

The new funds make possible a whole range of investment by the school—investments in new faculty, student scholarships and activities, research equipment, new academic programs, and more.

Endowed professorships are a particularly important investment, because they play a crucial role in attracting leaders who can build nationally recognized education and research programs. Through the generosity of our donors, SEAS was fortunate enough to establish two endowed professorships in 2014 and 2015, and recruit internationally recognized scholars to the faculty.

Ahmed Louri teaching in a class roomIn January 2015, Dr. Igor Efimov joined SEAS as the Alisann and Terry Collins Professor and chair of the new Department of Biomedical Engineering. In September 2015, the new chair of the Department of Electrical and Computer Engineering, Dr. Ahmed Louri, was installed as the David and Marilyn Karlgaard Professor.

The combination of an endowed professorship and the research facilities of the SEH creates a powerful set of incentives to be able to offer faculty candidates, and they give SEAS the chance to compete with the very best universities in recruiting the very best faculty.

Success

The SEH is not the crowning achievement of our work here at SEAS. It’s really more of a launch pad of sorts, an engineering achievement in its own right that enables us to reach heights we otherwise couldn’t reach. Or maybe it’s better conceived of as a command module—the control center and living quarters—for intrepid engineers and computer scientists on a voyage of discovery. Either way, it changes the way we work and opens the door for a stunning number of discoveries along the way. And for that, we celebrate our new, amazing, versatile SEH, the enabler of our ambitions.

Link to article

Weill Greenberg Center Profiled by Architect Magazine

Ballinger project the Weill Greenberg Center at Weill Cornell Medical College, designed with Polshek Partnership Architects, was recently profiled by Architect Magazine.

Excerpted from architectmagazine.com:

The Weill Cornell Medical Center is a sprawling complex on the Upper East Side of Manhattan. The campus includes several prominent buildings, among them the Weill Medical College of Cornell University, a teaching hospital, and research facilities. With the opening last year of the Weill Greenberg Center, the first clinical building in Weill Cornell’s 109-year history, the medical center establishes a new paradigm in ambulatory healthcare. The 15-story, 330,000-square-foot flagship, designed by New York–based Polshek Partnership Architects and by Ballinger of Philadelphia, will house the most advanced clinical facilities for departments such as dermatology, hypertension treatment, otolaryngology, in vitro fertilization, and cardiology.

Polshek Partnership was the architect for the base building and all the public spaces. The firm worked closely with Ballinger, which designed the conference center and clinical practices, including reception areas and exam and waiting rooms. Polshek partner Todd Schliemann explains the strategy: “There’s a trend for the delivery of healthcare away from a threatening environment. The goal is to deinstitutionalize the experience and create an atmosphere that is perceived as a familiar everyday event.”

The building’s translucent, vertically faceted curtain wall is a deliberate departure from the architecture of the surrounding buildings. By using low-iron glazing, tinted with a chevron pattern of white ceramic fritting, Schliemann says Polshek was able to create “a soft, elegant veil over the façade.” The contrast with the campus’s older masonry buildings brings the Weill Greenberg Center out of that institutional context and into the larger city, establishing a new, refined image for healthcare facilities.

The interiors are no less inspired. In both the public spaces and the clinics, Polshek and Ballinger pursued a spa theme, or salus per aquam (Latin for “health through water”), which suggested a palette of warm materials—wood, travertine walls and floors, and Cor-Ten steel accents, with soothing neutral colors, reflective and cascading water features in the lobby, and, of course, an abundance of natural light. The lobby is served, like a spa resort, by a convenient vehicle drop-off with valet parking. From the lobby, escalators ascend to the Patient Welcome and Resource Center, which is open to the public. The center offers patients and families a quiet place to rest between appointments and browse through medical information in one of its lounges, on a computer workstation, or in the Health Education Library.

Architect Eric Swanson led the design team for Ballinger. He acknowledges that evidence-based design now drives the strategies of most new healthcare facilities. The goal of evidence-based design is to create environments that are therapeutic, restorative, economical, and efficient and that increase patient satisfaction while reducing both patient and staff stress. The architect and client make decisions based on information gathered from research and past project evaluations. The architect then uses the findings to create the best research-backed solutions for the client’s particular needs. During the planning phase of this building, the architects worked closely with Weill Cornell’s Physician Organization, which is charged with implementing a new vision for ambulatory patient care through an initiative called Weill Cornell: We Care.

At the Weill Greenberg Center, the Ballinger team relied on materials to facilitate wayfinding. The reception area on every patient floor is located on the north side of the building, making orientation consistent throughout the building. Exam rooms occupy the interior, and doctors’ offices claim the southern and eastern perimeters. Reception areas are framed by backdrops of Cor-Ten steel, whose rust patina Swanson says is appropriate here: “It’s a real material, natural, durable, and urbane. It has a rich texture.” Bronze letters on the steel identify the clinic, and patients are directed either to the left or right, depending on their destination. Signage, etched into frosted-glass panels along the corridors, leads patients to the waiting rooms, which are rendered in neutral colors with midcentury modern leather furniture and high-end artwork selected by an art consultant. The serenity of the center’s waiting rooms supports the premise that there is a clear relationship between design and patient perceptions—the more attractive the environment, the higher the perceived quality of medical care and the lower the anxiety.

Ballinger focused a great deal of attention on the exam rooms. First of all, the firm designed the cabinetry to conceal the medical instruments that are usually on display. Finishes were carefully specified. For instance, when cork floors were rejected due to maintenance concerns, the architects found a rubber-vinyl alternative that looks like cork and supports the spa theme. The architects also concentrated on the lighting, creating an array of options. There’s a single, recessed downlight in the ceiling; under-cabinet lighting; and task lighting. This strategy allows the physician to choose the appropriate illumination for the circumstances.

The Weill Greenberg Center is a Pebble Project, a joint research effort between the nonprofit Center for Health Design and selected healthcare providers. The purpose of the Pebble Project initiative is to cause a “ripple effect” in American healthcare by providing documented examples of facilities whose design has made a difference in the level of care and financial performance. Although findings on Weill Greenberg have not yet been published, there is preliminary feedback suggesting that the center’s goals have been surpassed and that it will be a model for the next generation of healthcare design.

Link to article