Share the Air
Cascading Air Strategies Using Neutral Temperature Dedicated Outdoor Air Systems

Craig S. Spangler, AIA
Principal

Jonathan Friedan, PE, LEED AP
Principal
<table>
<thead>
<tr>
<th>Learning Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>• How Neutral Supply Temperature Systems Separate Ventilation From Heating & Cooling to Re-imagine Traditional Ventilation Strategies</td>
</tr>
<tr>
<td>• Energy Savings Optimization: Sweeping Air from Dry to Wet Spaces / Compartmentalization Impacts on Air Flow & Pressures</td>
</tr>
<tr>
<td>• Understand the Integration of Critical Components & Design to Reduce First Costs, Energy Use, & Maintenance</td>
</tr>
</tbody>
</table>
Speakers

Craig S. Spangler, AIA
Principal

Jonathan Friedan, PE, LEED AP
Principal
Evolution of Science: Teams & Facilities

- **Department Basic Science Labs**
- **Colocation Basic Science Labs**
- **Interdisciplinary Basic Science Labs Social Space**
- **Convergence Broad Space Spectrum Social Continuum**

ADDITIVE SYNERGISTIC
Convergent Uses/Decoupling

Neutral Air Handling (DOAS)

High Induction Exhaust Fans

Biology Lab
Social Space
Chemistry Lab (Fume Hood Intensive)
Computer Lab
DRY LAB/COMPUTATIONAL/OFFICE

- Code Ventilation: **370 CFM**
- Supply: Cooling Driven

WET TEACHING / RESEARCH LAB

- Code Ventilation: **430 CFM**
- Supply: Cooling Driven

Supply: Cooling/Chilled Beam Driven

TOTAL SUPPLY: 2,700 CFM

Supply:
- Traditional HVAC – 100% OA VAV
 - 1,200 CFM

Exhaust:
- 1,200 CFM

1,000 SF
Chilled Beams w/ Neutral Temperature Air

<table>
<thead>
<tr>
<th>DRY LAB/COMPUTATIONAL/OFFICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code Ventilation: 370 CFM</td>
</tr>
<tr>
<td>Supply: Latent Load Driven</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WET TEACHING / RESEARCH LAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code Ventilation: 430 CFM</td>
</tr>
<tr>
<td>Supply: Cooling/Chilled Beam Driven</td>
</tr>
</tbody>
</table>

SUPPLY

- **500 CFM**
- **1,000 CFM**

EXHAUST

- **500 CFM**
- **1,000 CFM**

TOTAL SUPPLY: **1,500 CFM**

45% REDUCTION

1,000 SF
Air Transfer – Chilled Beams w/ Neutral Temperature Air + Air Share

<table>
<thead>
<tr>
<th>500 CFM</th>
<th>1,000 CFM</th>
<th>1,000 CFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPPLY</td>
<td>TOTAL SUPPLY:</td>
<td>EXHAUST</td>
</tr>
<tr>
<td>500 CFM</td>
<td>1,000 CFM</td>
<td>0 CFM</td>
</tr>
</tbody>
</table>

Supply: Latent Load Driven 1,000 SF

Transfer: 500 CFM 1,000 SF

Reduction: 63% 63%

WET TEACHING / RESEARCH LAB
Code Ventilation: **430 CFM**
Supply: Cooling/Chilled Beam Driven

DRY LAB/COMPUTATIONAL/OFFICE
Code Ventilation: **370 CFM**
Supply: Latent Load Driven

6 AC/HR

1,000 SF
Issues + Challenges

- Code
- Control Complexity
- Air Quality / Ventilation
- Acoustics
Undergraduate Teaching Laboratories
Johns Hopkins University, Baltimore, MD

105,000 GSF
2013

ASHRAE Technology Award 2017
1st Place

LEED Platinum
Program

Neuroscience

Advanced Organic

Biophysics

Computer Lab

80% Wet Lab
20% Dry Lab
Typical Wet Teaching Lab

13’ – 4” Floor to Floor
9’ – 4” Floor to Cloud
Ductless Neutral Supply Air

13’- 4” Floor to Floor Height
Interdisciplinary Life Science Building
University of Maryland Baltimore County
First Floor Plan and Double Height Commons
Teaching and Research Labs Commons Active Classrooms

450 Students

14’ – 8” Floor to Floor
10’ – 0” Floor to Ceiling
Teaching and Research Labs Commons Active Classrooms
450 Students
Active Classrooms
450 Students

Teaching and Research Labs
Commons
Program

40% Wet Lab
60% Dry Lab
Typical Floor Plan

Flexible Teaching / Research Lab

14’ – 0” Floor to Floor
9’ – 6” Floor to Ceiling
Swarthmore College: Air Share Strategy
Three Case Studies Results/Energy Savings

Johns Hopkins University
Undergraduate Teaching Labs

- Hood Makeup via Corridor Plenum
- EUI (site) – 144 kbtu/gsf
- 0.9 cfm / sq ft (Operating Peak)

University of Maryland
Interdisciplinary Life Science Building

- Air Share via Atrium
- EUI (site) – 150 kbtu/gsf (est.)
- 0.8 cfm / sq ft (Estimated Peak)

Swarthmore College
Biology, Engineering + Psychology Building

- Air Share via Corridor Plenum
- EUI (site) – 120 kbtu/gsf (est.)
- 0.6 cfm / sq ft (Estimated Peak)
Questions?
Speakers

Craig S. Spangler, AIA
Principal: cspangler@ballinger.com
215.446.0400

Jonathan Friedan, PE, LEED AP
Principal: jfriedan@ballinger.com
215.446.0700